Book Name: Selina Concise

EXERCISE 12 (A)

Ouestion 1:

Complete the following table:

Point	Transformation	Image
(a) (5, -7)		(-5,7)
(b) (4, 2)	Reflection in x-axis	
(c)	Reflection in y-axis	(0, 6)
(d) (6, -6)		(-6,6)
(e) (4, -8)		(-4, -8)

Solution 1:

Point	Transformation	Image
(5, -7)	Reflection in origin	(-5, 7)
(4, 2)	Reflection in x-axis	(4, -2)
(0, 6)	Reflection in y-axis	(0, 6)
(6, -6)	Reflection in origin	(-6, 6)
(4 8)	Reflection in v-axis	(-4, -8)

Question 2:

A point P is its own image under the reflection in a line I. Describe the position of the point P with respect to the line I.

Solution 2:

Since, the point P is its own image under the reflection in the line I. So, point P is an invariant point.

Hence, the position of point P remains unaltered.

Question 3:

State the co-ordinates of the following points under reflection in x-axis:

(i) (3, 2) (ii) (-5, 4) (iii) (0, 0)

Solution 3:

(i) (3, 2)

The co-ordinate of the given point under reflection in the x-axis is (3, -2).

(ii) (-5,4)

The co-ordinate of the given point under reflection in the x-axis is (-5, -4).

(iii) (0, 0)

The co-ordinate of the given point under reflection in the x-axis is (0, 0).

Question 4:

State the co-ordinates of the following points under reflection in y-axis:

(i) (6, -3) (ii) (-1, 0) (iii) (-8, -2)

Solution 4:

(i) (6, -3)

The co-ordinate of the given point under reflection in the y-axis is (-6, -3).

(ii) (-1,0)The co-ordinate of the given point under reflection in the y-axis is (1,0).

(iii) (-8, -2)

The co-ordinate of the given point under reflection in the y-axis is (8, -2).

Question 5:

State the co-ordinates of the following points under reflection in origin:

(i) (-2, -4) (ii) (-2, 7) (iii) (0, 0)

Solution 5:

(i) (-2, -4)

The co-ordinate of the given point under reflection in origin is (2, 4).

(ii) (-2, 7)

The co-ordinate of the given point under reflection in origin is (2, -7).

(iii) (0, 0)

The co-ordinate of the given point under reflection in origin is (0, 0).

Question 6:

State the co-ordinates of the following points under reflection in the line x = 0

(i) (-6, 4) (ii) (0, 5) (iii) (3, -4)

Solution 6:

(i) (-6, 4)

The co-ordinate of the given point under reflection in the line x = 0 is (6, 4).

(ii) (0, 5)

The co-ordinate of the given point under reflection in the line x = 0 is (0, 5).

(iii) (3, -4)

The co-ordinate of the given point under reflection in the line x = 0 is (-3, -4).

Question 7:

State the co-ordinates of the following points under reflection in the line y = 0

(i) (-3, 0) (ii) (8, -5) (iii) (-1, -3)

Solution 7:

(i) (-3, 0)

The co-ordinate of the given point under reflection in the line y = 0 is (-3, 0).

(ii) (8, -5)

The co-ordinate of the given point under reflection in the line y = 0 is (8, 5).

(iii) (-1, -3)

The co-ordinate of the given point under reflection in the line y = 0 is (-1, 3).

Question 8:

A point P is reflected in the x-axis. Co-ordinates of its image are (-4, 5)

- (i) Find the co-ordinates of P.
- (ii) Find the co-ordinates of the image of P under reflection in the y axis Solution 8:
- (i) Since, M_x (-4, -5) = (-4, 5)So, the co-ordinates of P are (-4, -5).
- (ii) Co-ordinates of the image of P under reflection in the y-axis (4, −5).

Ouestion 9:

A point P is reflected in the origin. Co-ordinates of its image are (-2, 7)

- (i) Find the co-ordinate of P.
- (ii) Find the co-ordinates of the image of P under reflection in the x-axis

Solution 9:

- (i) Since, M₀ (2, −7) = (−2, 7)So, the co-ordinates of P are (2, −7).
- (ii) Co-ordinates of the image of P under reflection in the x-axis (2, 7).

Question 10:

The point P (a, b) is first reflected in the origin and then reflected in the y-axis to P. If P has coordinates (4, 6): evaluate a and b.

Solution 10:

 $M_D(a, b) = (-a, -b)$

 $M_y(-a, -b) = (a, -b)$

Thus, we get the co-ordinates of the point P' as (a, -b). It is given that the co-ordinates of P' are (4, 6).

On comparing the two points, we get,

Question 11:

The point P (x, y) is first reflected in the x-axis and then reflected in the origin to P. If P has coordinates (-8, 5); evaluate x and y.

Solution 11:

```
M_x(x, y) = (x, -y)

M_0(x, -y) = (-x, y)
```

Thus, we get the co-ordinates of the point P' as (-x, y). It is given that the co-ordinates of P' are (-8, 5).

On comparing the two points, we get,

x = 8 and y = 5

Question 12:

The point A(-3, 2) is reflected in the x-axis to the point A'. Point A' is then reflected in the origin to point A".

- (i) Write down the co-ordinates of A".
- (ii) Write down a single transformation that maps A onto A".

Solution 12:

- (i) The reflection in x-axis is given by M_x (x, y) = (x, -y). A' = reflection of A (-3, 2) in the x-axis = (-3, -2). The reflection in origin is given by M_O (x, y) = (-x, -y). A" = reflection of A' (-3, -2) in the origin = (3, 2)
- (ii) The reflection in y-axis is given by M_y (x, y) = (-x, y). The reflection of A (-3, 2) in y-axis is (3, 2).

Thus, the required single transformation is the reflection of A in the y-axis to the point A".

Question 13:

The point A (4, 6) is first reflected in the origin to point A' Point A' is then reflected in the y – axis to point A''.

- Write down the co-ordinates of A".
- (ii) Write down a single transformation that maps A onto A".

Solution 13:

(i) The reflection in origin is given by M_O (x, y) = (-x, -y).
 A' = reflection of A (4, 6) in the origin = (-4, -6)
 The reflection in y-axis is given by M_y (x, y) = (-x, y).
 A" = reflection of A' (-4, -6) in the y-axis = (4, -6)

(ii) The reflection in x-axis is given by M_x (x, y) = (x, -y). The reflection of A (4, 6) in x-axis is (4, -6).

Thus, the required single transformation is the reflection of A in the x-axis to the point A".

Question 14:

The triangle ABC, where A is (2, 6), B is (-3, 5) and C is (4, 7), is reflected in the y-axis to triangle A'B'C. Triangle A'B'C is then reflected in the origin to triangle A'B'C".

- write down the co-ordinates of A".B" and C".
- (ii) write down a single transformation that maps triangle ABC onto triangle A"B"C".

Solution 14:

(i) Reflection in y-axis is given by M_y (x, y) = (-x, y)
 ∴ A' = Reflection of A (2, 6) in y-axis = (-2, 6)

Similarly, B' = (3, 5) and C' = (-4, 7)

Reflection in origin is given by $M_D(x, y) = (-x, -y)$

∴ A" = Reflection of A' (-2, 6) in origin = (2, -6)

Similarly, B'' = (-3, -5) and C'' = (4, -7)

(ii) A single transformation which maps triangle ABC to triangle A"B"C" is reflection in x-axis.

Question 15:

P and Q have co-ordinates (-2, 3) and (5, 4) respectively. Reflect P in the x-axis to P' and Q in the y-axis to Q. State the co-ordinates of P' and Q'.

Solution 15:

Reflection in x-axis is given by $M_x(x, y) = (x, -y)$

P' = Reflection of P(-2, 3) in x-axis = (-2, -3)

Reflection in y-axis is given by $M_y(x, y) = (-x, y)$

Q' = Reflection of Q(5, 4) in y-axis = (-5, 4)

Thus, the co-ordinates of points P' and Q' are (-2, -3) and (-5, 4) respectively.

Question 16:

On a graph paper, plot the triangle ABC, whose vertices are at the points A (3, 1), B (5, 0) and C (7, 4).

On the same diagram, draw the image of the triangle ABC under reflection in the origin O (0, 0) Solution 16:

The graph shows triangle ABC and triangle A'B'C' which is obtained when ABC is reflected in the origin.

Question 17:

Find the image of point (4, -6) under the following operations:

(i) M_x . M_y (ii) M_y . M_x

(iii) Mo. Mx (iv) Mx. Mo

(v) M₀, M_y (vi) M_y, M_o

Write down a single transformation equivalent to each operation given above. State whether:

(a) $M_0, M_x = M_x, M_0$ (b) $M_y, M_0 = M_0, M_y$

Solution 17:

(i) M_x. M_y (4, -6) = M_y (-4, -6) = (-4, 6)Single transformation equivalent to M_x. M_y is M_O.

(ii) M_y. M_x(4, -6) = M_y(4, 6) = (-4, 6)Single transformation equivalent to M_y. M_x is M_O.

(iii)M_O. M_x (4, -6) = M_O (4, 6) = (-4, -6) Single transformation equivalent to M_O. M_x is M_y.

(iv)M_x. M_O (4, -6) = M_x (-4, 6) = (-4, -6) Single transformation equivalent to M_x. M_O is M_y.

(v) M_O. M_Y(4, -6) = M_O (-4, -6) = (4, 6) Single transformation equivalent to M_O. M_Y is M_X.

(vi) M_y. M_O (4, -6) = M_y (-4, 6) = (4, 6)

Single transformation equivalent to M_x . M_D is M_x .

From (iii) and (iv), it is clear that M_O . $M_X = M_X$. M_O . From (v) and (vi), it is clear that M_Y . $M_O = M_O$. M_X .

Question 18:

Point A (4, -1) is reflected as A' in the y – axis. Point B on reflection in the x-axis is mapped as B' (-2, 5). Write the co-ordinates of A' and B.

Solution 18:

Reflection in y-axis is given by $M_y(x, y) = (-x, y)$ A' = Reflection of A(4, -1) in y-axis = (-4, -1)Reflection in x-axis is given by $M_x(x, y) = (x, -y)$ B' = Reflection of B in x-axis = (-2, 5)Thus. B = (-2, -5)

Question 19:

The point (-5, 0) on reflection in a line is mapped as (5, 0) and the point (-2, -6) on reflection in the same line is mapped as (2, -6).

- (a) Name the line of reflection.
- (b) write the co-ordinates of the image of 5, -8) in the line obtained in (a).

Solution 19:

(a) We know that reflection in the line x = 0 is the reflection in the y-axis.

It is given that:

Point (-5, 0) on reflection in a line is mapped as (5, 0).

Point (-2, -6) on reflection in the same line is mapped as (2, -6).

Hence, the line of reflection is x = 0.

(b) It is known that M_y (x, y) = (-x, y) Co-ordinates of the image of (5, -8) in the line x = 0 are (-5, -8).

EXERCISE 12 (B)

Question:

Attempts this question on graph paper.

- (a) Plot A(3, 2) and B (5, 4) on graph paper. Take 2 cm = 1unit on both the axes.
- (b) Reflect A and B in the x axis to A' and B' respectively. Plot these points also on the same graph paper.
- (c) Write down:

- (i) the geometrical name of the figure ABB'A';
- (ii) the measure of angle ABB'.
- (iii) the image A" of A, when A is reflected in the origin.
- (iv) the single transformation that maps A' to A".

Solution:

(a) (b)

- (c)
 - (i) From graph, it is clear that ABB'A' is an isosceles trapezium.
 - (ii) The measure of angle ABB' is 45°.
 - (iii) A'' = (-3, -2)
 - (iv) Single transformation that maps A' to A" is the reflection in y-axis.

Question 2:

Points (3, 0) and (-1, 0) are invariant points under reflection in the line L_1 ; points (0, -3) and

- (0, 1) are invariant points on reflection in line L2.
- Name or write equations for the lines L₁ and L₂.
- (ii) write down the images of points P (3, 4) and Q (−5, −2) on reflection in L₁. Name the images as P' and Q' respectively.
- (iii) Write down the images of P and Q on reflection in L₂. Name the images as P" and Q" respectively.
- (iv) state or describe a single transformation that maps P onto P".

Solution 2:

(i) We know that every point in a line is invariant under the reflection in the same line.

Since points (3, 0) and (-1, 0) lie on the x-axis.

So. (3, 0) and (-1, 0) are invariant under reflection in x-axis.

Hence, the equation of line L_1 is y = 0.

Similarly, (0, -3) and (0, 1) are invariant under reflection in y-axis.

Hence, the equation of line L_2 is x = 0.

(ii) P' = Image of P (3, 4) in L₁ = (3, -4)

 $Q' = Image of Q (-5, -2) in L_1 = (-5, 2)$

- (iii) P" = Image of P (3, 4) in L₂ = (-3, 4)
 - O" = Image of Q (-5, -2) in L2 = (5, -2)
- (iv) Single transformation that maps P' onto P" is reflection in origin.

Question 3:

- (i) Point P (a, b) is reflected in the x-axis to P' (5, -2). Write down the values of a and b.
- (ii) P" is the image of P when reflected in the y-axis, write down the co-ordinates of P.
- (iii) Name a single transformation that maps P' to P".

Solution 3:

- (i) We know M_x (x, y) = (x, -y)
 - P'(5, -2) = reflection of P(a, b) in x-axis.

Thus, the co-ordinates of P are (5, 2).

Hence, a = 5 and b = 2.

- (ii) P" = image of P (5, 2) reflected in y-axis = (-5, 2)
- (iii) Single transformation that maps P' to P" is the reflection in origin.

Question 4:

The point (-2, 0) on reflection in a line is mapped to (2, 0) and the point (5, -6) on reflection in the same line is mapped to (-5, -6).

- (i) state the name of the mirror line and write its equation.
- (ii) state the co-originates of the image of (-8, -5) in the mirror line.

Solution 4:

(i) We know reflection of a point (x, y) in y-axis is (-x, y).

Hence, the point (-2, 0) when reflected in y-axis is mapped to (2, 0).

Thus, the mirror line is the y-axis and its equation is x = 0.

(ii) Co-ordinates of the image of (-8, -5) in the mirror line (i.e., y-axis) are (8, -5).

Question 5:

The points P (4, 1) and Q (-2, 4) are reflected in line y = 3. Find the co-ordinates of P', the image of P and Q', the image of Q.

Solution 5:

The line y = 3 is a line parallel to x-axis and at a distance of 3 units from it.

Mark points P (4, 1) and O (-2, 4).

From P, draw a straight line perpendicular to line CD and produce. On this line mark a point P'
which is at the same distance above CD as P is below it.

The co-ordinates of P' are (4, 5).

Similarly, from Q, draw a line perpendicular to CD and mark point Q' which is at the same distance below CD as Q is above it.

The co-ordinates of Q' are (-2, 2).

Question 6:

A point P (-2, 3) is reflected in line x = 2 to point P'. Find the co-ordinates of P'.

Solution 6:

The line x = 2 is a line parallel to y-axis and at a distance of 2 units from it.

Mark point P (-2, 3).

From P, draw a straight line perpendicular to line CD and produce. On this line mark a point P' which is at the same distance to the right of CD as P is to the left of it.

The co-ordinates of P' are (6, 3).

Question 7:

A point P (a, b) is reflected in the x-axis to P' (2, -3). Write down the values of a and b. P" is the image of P, reflected in the y-axis. Write down the co-ordinates of P". Find the co-ordinates of P", When P is reflected in the line, parallel to y-axis, such that x = 4.

Solution 7:

A point P (a, b) is reflected in the x-axis to P' (2, -3).

We know $M_x(x, y) = (x, -y)$

Thus, co-ordinates of P are (2, 3). Hence, a = 2 and b = 3.

P'' = Image of P reflected in the y-axis = (-2, 3)

P" = Reflection of P in the line (x = 4) = (6, 3)

Question 8:

Points A and B have co-ordinates (3, 4) and (0, 2) respectively. Find the image:

- (a) A' and A under reflection in the x-axis
- (b) B' of B under reflection in the line AA'.
- (c) A" of A under reflection in the y-axis
- (d) B" of B under reflection in the line AA".

Solution 8:

- (a) A' = Image of A under reflection in the x-axis = (3, -4)
- (b) B' = Image of B under reflection in the line AA' = (6, 2)
- (c) A" = Image of A under reflection in the y-axis = (-3, 4)
- (d) B" = Image of B under reflection in the line AA" = (0, 6)

Ouestion 9:

- (i) Plot the points A (3, 5) and B (-2, -4) Use 1 cm = 1 unit on both the axes.
- (ii) A' is the image of A when reflected in the x axis. Write down the co-ordinates of A' and plot it on the graph paper.
- (iii) B' is the image of B when reflected in the y-axis followed by reflection in the origin. Write down the co-ordinates of B' and plot it on the graph paper.
- (iv) Write down the geometrical name of the figure AA'BB'.
- (v) Name two invariant points under reflection in the x-axis.

Solution 9:

- The points A (3, 5) and B (-2, -4) can be plotted on a graph as shown.
- (ii) A' = Image of A when reflected in the x-axis = (3, -5)
- (iii) C = Image of B when reflected in the y-axis = (2, -4)
 - B' = Image when C is reflected in the origin = (-2, 4)
- (iv) Isosceles trapezium
- Any point that remains unaltered under a given transformation is called an invariant.
- (vi) Thus, the required two points are (3, 0) and (-2, 0).

Question 10:

The point P (5, 3) was reflected in the origin to get the image P'.

- (a) write down the co-ordinates of P'.
- (b) If M is the foot of the perpendicular from P to the x-axis, find the co-ordinates of M.
- (c) If N is the foot of the perpendicular from P' to the x axis, find the co-ordinates of N.
- (d) Name the figure PMP'N.
- (e) Find the area of the figure PMP'N.

Solution 10:

- (a) Co-ordinates of P' = (-5, -3)
- (b) Co-ordinates of M = (5, 0)
- (c) Co-ordinates of N = (-5, 0)
- (d) PMP'N is a parallelogram.
- (e) Are of PMP'N = 2 (Area of D PMN)
- $=2\times\frac{1}{2}\times10\times3$
- = 30 sq units

Question 11:

The point P(3, 4) is reflected to P' in the x-axis and O' is the image of O (the origin) when reflected in the line PP' write:

- (i) the co-ordinates of P' and O'.
- (ii) the length of the segments PP' and OO'.
- (iii) the perimeter of the quadrilateral POP'O'.
- (iv) the geometrical name of the figure POP'O'.

Solution 11:

- (i) Co-ordinates of P' and O' are (3, -4) and (6, 0) respectively.
- (ii) PP' = 8 units and OO' = 6 units.
- (iii) From the graph it is clear that all sides of the quadrilateral POP'O' are equal. In right Δ PO'Q,

PO' = $\sqrt{(4)^2 + (3)^2}$ = 5 units

So, perimeter of quadrilateral POP'O' = 4 PO' = 4 × 5 units = 20 units

(iv) Quadrilateral POP'O' is a rhombus.

Question 12:

A (1, 1), B (5, 1), C (4, 2) and d (2, 2) are vertices of a quadrilateral. Name the quadrilateral ABCD.A, B, C and D are reflected in the origin on to A', B', C', and D', on the graph sheet and write their co-ordinates. Are D, A, A' and D' collinear?

Solution 12:

Quadrilateral ABCD is an isosceles trapezium.

Co-ordinates of A', B', C' and D' are A'(-1, -1), B'(-5, -1), C'(-4, -2) and D'(-2, -2) respectively. It is clear from the graph that D, A, A' and D' are collinear.

Question 13:

P and O have co-ordinates (0, 5) and (-2, 4).

- (a) P is invariant when reflected in an axis Name the axis.
- (b) Find the images of O on reflected in the axis found in (i).
- (c) (0, K) on reflection in the origin is invariant. Write the value of k.
- (d) Write the co- originates of the image of Q, obtained by reflecting it in the origin followed by reflection in x-axis.

Solution 13:

- (a) Any point that remains unaltered under a given transformation is called an invariant. It is given that P (0, 5) is invariant when reflected in an axis. Clearly, when P is reflected in the y-axis then it will remain invariant. Thus, the required axis is the y-axis.
- (b) The co-ordinates of the image of Q (-2, 4) when reflected in y-axis is (2, 4).
- (c) (0, k) on reflection in the origin is invariant. We know the reflection of origin in origin is invariant. Thus, k = 0.
- (d) Co-ordinates of image of Q (-2, 4) when reflected in origin = (2, -4) Co-ordinates of image of (2, -4) when reflected in x-axis = (2, 4) Thus, the co-ordinates of the point are (2, 4).

Question 14:

The points P (1, 2), Q(3, 4) and R(6, 1) are the verticals of Δ PQR.

- (a) Write down the co-ordinates of P', Q' and R, if Δ P'Q'R' is the image of Δ pqr, when reflected in the origin.
- (b) Write down the co-ordinates of P", Q" and R", IF Δ P"Q"R" is the image of ΔPQR, when reflected in the x-axis
- (c) mention the special name of the quadrilateral QR R"Q" and find its area.

Solution 14:

- (a) The co-ordinates of P', Q' and R' are (-1, -2), (-3, -4) and (-6, -1) respectively.
- (b) The co-ordinates of P", Q" and R" are (1, -2), (3, -4) and (6, -1) respectively.
- (c) The quadrilateral QRR"Q" is an isosceles trapezium.

Area of QRR"Q" =
$$\frac{1}{2}$$
 (RR"+ QQ") × Height
= $\frac{1}{2}$ (2 + 8) x 3 = 15 sq units

Ouestion 15:

- (a) The point P(2, 4) is reflected about the line x = 0 to get the image Q. Find the co-ordinates of Q.
- (b) The point Q is reflected about the line y = 0 to get the image R. Find the co-ordinates of R.
- (c) Name the figure PQR.
- (d) Find the area of figure PQR.

Solution 15:

- (ii) Q(-2, -4) is reflected in (y = 0) x-axis to get R. Q(-2, -4) \xrightarrow{Mx} R(-2, 4)
- (iii) The figure PQR is right angled triangle.

(iv) Area of $\Delta PQR = \frac{1}{2} \times PQ \times QR = \frac{1}{2} \times 4 \times 8 = 16$ Sq. units

Question 16:

 \bar{A} and \bar{B} ' are images of A(-3,5) and B(-5,3) respectively on reflection in y-axis. Find:

- (a) the co-ordinates of A' and B'
- (b) Assign special name of quadrilateral AA'B'B.
- (c) Are AB' and BA' equal in length?

Solution 16:

- (a) The co-ordinates of A' and B' are (3, 5) and (5, 3).
- (b) Quadrilateral AA'B'B is an isosceles trapezium.
- (c) Yes, AB' and BA' are equal in length.