Kolabari Tutorial

ICSE X

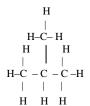
Comprehensive study material

Organic Chemistry

- ♣ The following two characteristic features enable carbon to form a large number of compounds:
 - Carbon has the unique ability to form bonds with other atoms of carbon(self-linking). This property is called catenation.
 - These compounds may have long chains of carbon, branched chains of carbon or even carbon atoms arranged in rings. In addition, carbon atoms may be linked by single, double or triple bonds.
 - (ii) Since carbon has tetravalency (i.e. valency of four), it is capable of bonding with four other atoms of carbon or atoms of some other mono-valent element.
- All the carbon compounds which contain just carbon and hydrogen are called hydrocarbons
 - The compound of carbon, which are linked by only single bonds between the carbon atoms are called saturated hydrocarbons. The saturated hydrocarbons are called alkanes (C_nH_{2n+2}) .
 - Compounds of carbon having double or triple bonds between their carbon atoms are called unsaturated hydrocarbons. The unsaturated hydrocarbons which contain one or more double bonds are called alkenes(C_nH_{2n}). Those unsaturated hydrocarbons containing one or more triple bonds are called alkynes(C_nH_{2n-1}). - DARI TIITA

Saturated organic compounds	Unsaturated organic compounds
Carbon atoms are joined only by a single covalent bond	Carbon atoms are joined only by a double or triple covalent bond
They are less reactive and undergo substitution reaction	They are more reactive and undergo addition reaction

- 4 A homologous series is a group of organic compounds having similar structures and similar chemical properties in which the successive compounds differ by CH₂ group. Ex: alkanes, alkenes, alkynes, haloalkanes, alcohols, aldehydes, ketones and carboxylic acids.
 - As the molecular mass increases in any homologous series, a gradual change in their physical properties is seen, the melting points and boiling points increase with increasing molecular mass.
 - The chemical properties, which are determined solely by the functional group, remain similar in a homologous series.
 - An atom or a group of atoms which makes a carbon compound reactive and decides its properties is called a functional group.
 - The group formed by the removal of one hydrogen atom from an alkane molecule is called an alkyl group (-R). The general formula of an alkyl group is C_nH_{2n+1} . Ex: Methyl -CH₃; Ethyl -C₂H₅


	Functional group	General formulae	Types of organic compounds	Suffix	
	Halide – X (F,Cl,Br,I)	R-X	Haloalkanes	ane	
	Hydroxyl – OH	R-OH	Alcohols	ol	
	411/	OH (LI	TOOK HILL		
	Aldehyde -CHO	C=O	Aldehydes	al	
001	TION NI	R /	Aidenydes	0-	
OCA	TION: INE	ARODH	ARAI GAS	G 0.	
	Carboxyl –COOH	B-J	Carboxylic acid	oic acid	
		R-C- O -H	NGA		
	0	О	and the second s		
			Ketones	one	
	Keto -C-	R-C- R'			
	Ether -C-O-C-	R-O- R'	Ethers	oxy	
COL	TACT. [7]				ž
CUN	IIAUI:				

- ♣ The compounds with identical molecular formula but different structural formula are known as isomers, and the phenomenon as isomerism.
 - Chain isomers of Butane:

LOCA

Butane[*n-butane*]

2-methyl propane[iso-butane]

Kolabari Tutorial

ICSE X

Comprehensive study material

Chain isomers of Pentane:

CH₃-CH₂-CH₂-CH₂-CH₃

 CH_3 CH₃-CH-CH₂-CH₃ -C-CH₃

Pentane[*n-pentane*]

2-methyl butane[iso-pentane] 2,2-dimethyl propane[neo-pentane]

- Example of position isomerism:
 - (i) CH_3 - CH_2 - $C\equiv CH$ (but-1-yne)

 CH_3 - $C\equiv C$ - CH_3 (but-2-yne)

O CH₃-CH₂-C-CH₂-CH₃ (pent-3-one)

O CH₃-C-CH₂-CH₂-CH₃ (pentan-2-one)

- ♣ The official names or systematic names of organic compounds were given by International Union of Pure and Applied Chemistry in 1958.so they are called IUPAC name or IUPAC nomenclature. Naming a carbon compound can be done by the following method:
 - The longest continuous chain of 'C' atoms, known as parent chain, is selected. Number of 'C' atoms present in it determine root word of its name.

 No. of C-atoms | 1 | 2 | 3 | 4 | 5 | 6

Meth Eth Prop But Pent Hex Root word

The root word is followed by one appropriate suffix, which represent the nature of bond in carbon-(ii) carbon atom.

Nature of bond	Suffix	General name	General formula
Single bond (C-C)	-ane	Alkane	C_nH_{2n+2}
Double bond (C=C)	-ene	Alkene	C_nH_{2n}
Triple bond (C≡C)	-yne	Alkyne	C_nH_{2n-2}

- (iii) The branch chains are considered to be substituent, and their positions are indicated by the number of carbon atoms to which they are attached.
- The carbon atoms of the largest chains are numbered in such a way that the alkyl group get the (iv) smallest possible number.
- (v) In case, any functional group is also present in the chain, then the carbon atoms are numbered in such a way that the functional group gets the smallest possible number.
- In nomenclature, 'e' of alkane is replaced by suffix of functional group indicating position.
- The position(s) of alkyl group(s) are indicated by writing the position and name of the alkyl group just before the name of parent hydrocarbon.
- (viii) Di-, tri-, tetra-, are used as prefix for two, three and four groups of the same type.

Methane	$\mathrm{CH_4}$	нн н-с-с-н нн	Ethane	C_2H_6
Propane	BHA C ₃ H ₈ A	нн нн н-С-С-С-С-Н нннн	Butane (n-butane)	C ₄ H ₁₀
2-methyl propane (Iso butane)	C ₄ H ₁₀	Н Н Н-С=С-Н	Ethene (Ethylene)	C_2H_6
Propene/prop-1-ene (Propylene)	C_3H_6	ӊӊӊ ӊ н-С-С-С=С-н ҥ҅н	Butene/but-1-e (Butylene)	ne C ₄ H ₈
But-2-ene	C_4H_8	Н-С-Н Н	·H 2-methylproc	ene C ₄ H ₈
	2-methyl propane (Iso butane) Propene/prop-1-ene (Propylene)	Propane C ₃ H ₈ 2-methyl propane (Iso butane) Propene/prop-1-ene C ₃ H ₆ (Propylene)	Methane CH_4 H - C - C - H	Methane CH_4 H - C - C - H

Comprehensive study material

	Cor	ilpi ciiciis.	ive stady iii	attiai	
Н-С≡С-Н	Ethyne (Acetylene)	C_2H_2	Н Н-Ç-С≡С-Н Н	H Propyne	C_3H_4
Н Н Н-С-С≡С-С Н Н	-H But-2-yne	C_4H_6	Н Н-С-О-Н Н	Methanol/Methan-1-	ol CH₃OH
Н Н Н-С-С-О-Н Н Н	ABA	C ₂ H ₅ OH	н н н н-¢-с-с-о-н н н н	Propanol/Propan-1-o	ol C ₃ H ₇ OH
нн н н-Ç−Ç − С-I н О-нн Г	H Propan-2-ol Helping stud	C₃H₁OH lents rea	Н Н Н Н-С – С – С-Н ОН ОН ОН	1 1 ' '	$C_3H_5(OH)_3$
ӊ Q ӊ н-С=О ӊ	Methanal/Methan-1- (Formaldehyde)		₩₩ H-Ç-C=O Н	Propanal/Propan-1-al (Acetaldehyde)	C ₂ H ₄ O
Н-Ç-С-С-Н Н Н Н О	Propan-2-one (Acetone)	C_3H_6O	О H-C-O-Н НН ОН	Methanoic-1-oic acid (Formic acid)	CH ₂ O ₂
н-Ç-С-О-Н Н	Ethanoic acid (Acetic acid)	C ₂ H ₄ O ₂	НН ОН Н-С-С-О-С-С-Н НН Н	Ethyl ethanoate (Ethyl acetate)	$C_4H_8O_2$
H H-C-Cl H	Chloromethane	CH₃Cl	Н Вг Н Н-С-С-С-Вг Н Н Н	1,2-dibromopropane	$C_3H_6Cl_2$
ÇI H-C-CI CI	Trichloromethane (Chloroform)	CHCl ₃	Cl Cl-¢-Cl Cl	tetrachloromethane (Carbon tetrachloride)	
Compound Ethene	Ethyne Ethanol N	Methanal E	thanal Propano	one Methanoic Ethanoic	Ethyl

Compound	Ethene	Ethyne	Ethanol	Methanal	Ethanal	Propanone	Methanoic	Ethanoic	Ethyl
		W	MIND	LINEATT	1 V/M D	13/ I N/I	acid	acid	ethanoate
Common	Ethylene	Acetylene	Ethyl	Formaldehyde	Acetaldehyde	Acetone	Formic	Acetic	Ethyl
name			alcohol	TALLITATION IN	TIVVI	112	acid	acid	acetate or,
									ester

LOCATION: NEAR BHARAT GAS GODOWN.

ALKANE

General formula: C_nH_{2n+2}

Members of series: Methane (CH₄), Ethane (C₂H₆)....

- Saturated hydrocarbon (Since all the four valencies of carbon are fully satisfied by a single
- Also known as Paraffins (little affinity)
- They undergo substitution reaction.

Lab preparation:

• Methane can be obtained by heating a mixture of sodium ethanoate (sodium acetate) and soda lime (a mixture of sodium hydroxide and calcium oxide)

CH₃COONa

 $CaO; 300^{\circ}C$ $Na_2CO_3 + CH_4\uparrow$ NaOH

sodium ethanoate (sodium acetate)

Ethane can be obtained by heating a mixture of sodium propanoate (sodium propionate) and soda lime. $C_2H_5COONa \quad + \quad NaOH \quad \xrightarrow{CaO; \, 300^\circ C} \quad Na_2CO_3 \quad + \quad C_2H_6 \uparrow$

sodium propanoate (sodium propionate)

Kolabari Tutorial

ICSE X

Comprehensive study material

Other method of preparation: Iodomethane (methyl iodide) or bromoethane (ethyl bromide0 is reduced by nascent hydrogen at ordinary room temperature to give methane or ethane.

$$CH_3I + 2[H] \rightarrow CH_4 + HI$$

 $C_2H_5Br + 2[H] \rightarrow C_2H_6 + HBr$

Nacent hydrogen is produced by the action of Zn powder and dil HCl.

♣ Substitution reaction: Methane or ethane reacts with chlorine, bromine or iodine in diffused sunlight (or heated upto 600K) to give corresponding substituted products.

By supplying more chlorine, it is possible to replace all the hydrogen atoms of methane by chlorine, in successive steps. In this way we can obtain four compounds: Chloromethane(CH₃Cl), Dichloromethane (CH₂Cl₂); Trichlromethane or Chloroform (CHCl₃); and Tetrachloromethane (CCl₄).

Similarly one mole of ethane reacts with one mole chlorine to give chloroethane.

One more example of substitution reaction is $C_2H_6 + Cl_2$ $C_2H_6 + Br_2$ $C_2H_5Cl + HCl$ $C_2H_5Br + HBr$

- **Reaction with oxygen:** Methane or ethane burn in air with a bluish non-sooty flame to form carbon dioxide and water vapour. $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$
- **Oxidation:** On controlled oxidation or catalytic oxidation, alkane give alcohols or aldehydes or carboxylic acids, depending upon the reaction conditions.

epending upon the reaction conditions.
$$2CH_4 + O_2 \xrightarrow{475K \text{ Cu tube}} 2CH_3\text{OH} \qquad ; \quad 2C_2H_6 + O_2 \xrightarrow{475K \text{ Cu tube}} 2C_2H_5\text{OH}$$

$$2CH_4 + O_2 \xrightarrow{Mollybdenum \text{ oxide (MoO)}} \text{HCHO} + H_2\text{O} \qquad ; \quad C_2H_6 + O_2 \xrightarrow{MoO} 2CH_3\text{CHO} + H_2\text{O}$$

$$2CH_4 + 3O_2 \xrightarrow{Mn \text{ compound}} 2H\text{COOH} + 2H_2\text{O} \qquad ; \quad C_2H_5\text{OH} + O_2 \xrightarrow{Pt, 300^\circ c} CH_3\text{COOH} + H_2\text{O}$$

ALKENE

General formula: C_nH_{2n}

Members of series: Ethene (C_2H_4) , Propene (C_3H_6)

AR BHARAT GAS GODOWN.

- Unsaturated aliphatic hydrocarbon containing a double bond.
- ➤ Also known as Olefins (Oil forming)
- They undergo Addition reaction.
- **♣** Preparation of Ethene (ethylene):

By dehydration of ethyl alcohol

CONTACT:

$$2C_2H_5OH$$
 $\xrightarrow{170^{\circ}C}$ $C_2H_4 + H_2C_2$

Obtained ethene gas is passed through NaOH solution to remove impurities (CO₂ and SO₂).

For industrial purpose ethene can be obtained by passing ethanol vapours through a tube containing alumina (Al_2O_3) at $300^{\circ}C$

$$2C_2H_5OH \xrightarrow{300^{\circ}C} C_2H_4 + H_2O$$

• By dehydrohalogenation: C_2H_5Cl + KOH $\rightarrow C_2H_4 + KCl + H_2O$ (alcoholic hot and concentrated)

$$C_2H_5Br$$
 + KOH (alc. hot & conc) $\rightarrow C_2H_4$ + KBr +H₂O
 C_2H_5I + KOH (alc. hot & conc) $\rightarrow C_2H_4$ + KI +H₂O

- **Addition reactions:**
 - Hydrogenation: $C_2H_4 + H_2 \xrightarrow{\text{Ni catalyst}} C_2H_6$ $(CH_2=CH_2)$ (CH_3-CH_3)

This reaction can take place at ordinary temperature in presence of platinum or palladium catalyst.

Kolabari Tutorial

ICSE X

Comprehensive study material

• Halogenation:

$$CH_2=CH_2+Cl_2 \rightarrow CH_2-CH_2$$

$$Cl Cl$$

$$(C_2H_4) (C_2H_4Cl_2)$$
1,2-dichloroethane(ethylene chloride)

 $C_2H_4 + Br_2 \rightarrow CH_2Br-CH_2Br$ 1,2-dibromoethane(*ethylene bromide*)

- ! Bromine solution in CCl₄ has an orange colour, when added dropwise to ethene, the orange colour of bromine disappears due to formation of the colourless ethylene bromide.
- Hydration:

$$C_2H_4 + H_2O \xrightarrow{H^+} C_2H_5OH$$
 $(CH_2=CH_2)$

A water molecule gets added to alkene in the presence of acids (e.g. sulphuric acid) to form alcohol.

Addition of HCl:

$$C_2H_4 + HCl \rightarrow C_2H_5Cl$$

 $(CH_2=CH_2)$ (CH_3-CH_2Cl)

• Oxydation: Ethene is oxidised with alkaline KMnO₄ at room temperature.

$$CH_2=CH_2 + H-O-H + 2[O] \xrightarrow{Alkaline \ KMnO_4} CH_2-CH_2 \\ \hline \longrightarrow CH_2-CH_2$$
 Ethan-1,2-diol OH OH

The purple colour of KMnO₄ decolourises.

ALKYNE

General formula: C_nH_{2n-2}

Members of series: Ethyne (C_2H_2) , Propyne (C_3H_4) ...

 $+ 2KBr + 2H_2O$

- Unsaturated aliphatic hydrocarbon containing a triple bond.
- > They undergo Addition reaction.

♣ Preparation of Ethyne (acetylene):

• Lab method:

Calcium carbide reacts with water to produce colourless gas with ether like odour (acetylene gas)

$$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2\uparrow$$

• By boiling 1,2-dibromoethane (ethylene dibromide) with alcoholic potassium hydroxide, ethyne is

formed. CH_2Br $200^{\circ}C$ CH CH_2Br (alcoholic) CH_2Br CH_2Br C

- **4** Addition reactions:
 - Hydrogenation:

$$CH \equiv CH + H_2 \qquad \xrightarrow{\text{Ni catalyst}} \quad CH_2 - CH_2 \xrightarrow{\text{Ni , 200°C}} \quad CH_3 - CH_3$$

• Halogenation:

$$\begin{array}{c} \text{CH} \\ \parallel \parallel \\ \text{CH} \end{array} + \begin{array}{c} \text{Cl}_2 \\ \parallel \\ \text{CHCl}_1 \end{array} \begin{array}{c} \text{CHCl}_2 \\ \parallel \\ \text{CHCl}_2 \end{array}$$

1,2-dichloroethene (acetylene dichloride)

$$C_2H_2 + Br_2 \rightarrow C_2H_2Br_2 \xrightarrow{Br_2} C_2H_2Br_4$$
1,2,3,4-tetrabromoethane (acetylene tetrabromide)

! When bromine solution in CCl₄, is added dropwise to ethyne, its brown colour disappears due to formation of the colourless addition product (acetylene dibromide or acetylene tetrabromide).

Kolabari Tutorial

ICSE X

Comprehensive study material Chemical tests to distinguish between Alkane, Alkenes and Alkynes

Test	Alkanes	Alkenes	Alkynes
On dding a few drops of bromine	No	Redish brown colour of	Redish brown colour of
solution in carbon tetrachloride(CCl ₄)	change	bromine solution gets	bromine solution gets
solution to the hydrocarbon.		decolourised	decolourised
On adding a few drops of alkaline	No	The purple colour fades	The purple colour fades
potassium permanganet (purple colour)	change		(Baeyer's test)
to hydrocarbon			
On adding a few drops of ammonical	No	No change	Red precipitate of
cuprous chloride to the hydrocarbon.	change		copper acetylene is
			formed
On adding ammonical silver nitrate to	No	No change	White precipitate of
the hydrocarbon. Helping stud	change	1 11 1	silver acetylide is
Helping stud	ents r	each their potei	formed

ALCOHOL

Ethanol (or Ethyl alcohol): Ethanol is an inflammable volatile liquid. The melting point of ethanol is 78°C (351 K). Ethanol is a good solvent and due to presence of hydroxyl group it is also soluble in water in all proportions.

Ethanol is obtained from fermentation of sugar.

$$C_6H_{12}O_6$$

enzymes,
$$37^{\circ}C$$
 $2C_2H_5OH + 2CO_2$

♣ Preparation of Ethanol (or Ethyl alcohol):

• Lab method: Alcohol can be prepared by the hydrolysis of alkyl halides on reaction with a hot dilute alkali.

$$\begin{array}{c} \text{CH}_3\text{Br} + \text{KOH}(\text{aq}) \xrightarrow{\text{boil}} & 2\text{CH}_3\text{OH} + \text{KBr} \\ \text{C}_2\text{H}_5\text{Br} + \text{NaOH}(\text{aq}) \xrightarrow{\text{boil}} & 2\text{C}_2\text{H}_5\text{OH} + \text{NaBr} \\ \end{array} \begin{array}{c} \text{C}_2\text{H}_5\text{Cl} + \text{KOH}(\text{aq}) \xrightarrow{\text{boil}} & 2\text{C}_2\text{H}_5\text{OH} + \text{KCl} \\ \text{C}_2\text{H}_5\text{I} + \text{NaOH}(\text{aq}) \xrightarrow{\text{boil}} & 2\text{C}_2\text{H}_5\text{OH} + \text{NaI} \\ \end{array}$$

• Industrial method (large scale method): When conc. Sulphuric acid is added to ethene at a temperature of 80°C and pressure of 30atm, ethyl hydrogen sulphate is produced. Ethyl hydrogen sulphate, on hydrolysis with boiling water, gives ethanol.

water, gives ethanol.

$$C_2H_4 + H_2SO_4 \xrightarrow{30 \text{ atm}} C_2H_5HSO_4$$
 $C_2H_5HSO_4 + H_2O \Rightarrow C_2H_5OH + H_2SO_4$

Ethyl hydrogen sulphate (Boiling)

! Alternatively, ethanol is produced when ethene is heated with water at 300°C and 60atm pressure in presence of phosphoric acid catalyst. $C_2H_4 + H_2O \xrightarrow{300^{\circ}C. 60 \text{ atm}} C_2H_5OH$

Combustion: Ethanol burns readily in air to form carbon dioxide and water vapour, and releasing a lot of heat and light.

$$C_2H_5OH + 3O_2$$
 Combustion $2CO_2 + 3H_2O$

Reaction with sodium: Alcohols react with sodium leading to the evolution of hydrogen.

$$2CH_3OH + 2Na \longrightarrow 2CH_3ONa + H_2 \uparrow$$
 (sodium methoxide)

$$2C_2H_5OH + 2Na \longrightarrow 2C_2H_5ONa + H_2\uparrow$$
 (sodium ethoxide)

This effervescence of hydrogen serve as a test for alcohol.

Kolabari Tutorial

ICSE X

Comprehensive study material

◆ Dehydration with conc. Sulphuric acid: Heating ethanol at 443 K with excess concentrated sulphuric acid results in the dehydration of ethanol to give ethene.

CH₃CH₂OH
$$\stackrel{\text{Conc. H}_2\text{SO}_4; 170^{\circ}\text{C}}{\longrightarrow}$$
 CH₂ = CH₂ + H₂O

- ! The conc. sulphuric acid can be regarded as a dehydrating agent who removes water from ethanol.
- **Oxidation:** Alcohols get converted to carboxylic acids on oxidation:

CH₃OH
$$\xrightarrow{[O]}$$
 HCHO + H₂O $\xrightarrow{[O]}$ HCOOH
$$C_2H_5OH \xrightarrow{K_2Cr_2O_7}$$
 CH₃CHO + H₂O $\xrightarrow{K_2Cr_2O_7}$ CH₃COOH

- ! Alkaline potassium permanganate or acidified potassium dichromate are oxidising alcohols to acids, that is, adding oxygen to the starting material. Hence they are known as oxidising agents.
- **↓** Uses:
 - ! It is used in thermometers.
 - ! It is used as antifreeze for automobile radiators.
 - ! In addition, because it is a good solvent, it is also used in medicines such as tincture iodine, cough syrups, and many tonics.
 - ! Some countries now use alcohol as an additive in petrol since it is a cleaner fuel

Carboxylic Acids

Ethanoic acid (or Acetic acid): Ethanoic acid is commonly called acetic acid and belongs to a group of acids called carboxylic acids. 5-8% solution of acetic acid in water is called vinegar and is used widely as a preservative in pickles. The anhydrous acid on cooling forms crystalline mass resembling ice; at its melting point 290 K (or 17°C) and for this reason, it is called glacial acetic acid.

♣ Reaction with a base: Like mineral acids, ethanoic acid reacts with a base such as sodium hydroxide to give a salt (sodium ethanoate or commonly called sodium acetate) and water:

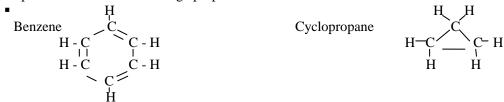
Esterification reaction: Ethanoic acid reacts with absolute ethanol in the presence of a few drops of concentrated sulphuric acid (as catalyst) to give an ester –

Conc.
$$H_2SO_4$$

CH₃COOH + HOC₂H₅

Ethanoic acid Ethanol

Conc. H_2SO_4


CH₃COOC₂H₅ + H₂O

Ethyl ethanoate (Ethyl acetate / ester)

! Esters are sweet-smelling substances. These are used in making perfumes and as flavouring agents.

EVIDANGA

- Methane is a green house gas.
- Ethene is used for ripening many raw fruits and Polythene is made up by polymerisation of ethene.
- Iso butane is used in cooking gas LPG (Liquid petroleum Gas).
- Acetylene is used for oxy-acetylene welding at very high temperature.
- Ethanol is an important industrial solvent. To prevent the misuse of ethanol produced for industrial use, it is made unfit for drinking by adding poisonous substances like methanol and pyridine to it. Dyes like copper sulphate are also added in small amount to colour the alcohol blue so that it can be identified easily. This is called denatured alcohol.
- Spurious alcohol contains large proportions of methanol in a mixture of alcohol.

